
LLNL-TR-490254

HYDRODYNAMICS
CHALLENGE PROBLEM

R. D. Hornung, J. A. Keasler, M. B. Gokhale

July 5, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Hydrodynamics Challenge Problem
Lawrence Livermore National Laboratory

June 8, 2011

Contents

Contents 1

1 Hydrodynamics Challenge Problem 3
1.1 Introduction . 3

1.1.1 Motivation for Hydrocodes for Defense Applications 3
1.1.1.1 Hydrocodes in DoD HPC Workloads 3
1.1.1.2 Hydrocodes on UHPC Architectures 3

1.1.2 Hydrodynamics Methods . 4
1.2 Lagrangian Hydrodynamics: A Closer Look . 5

1.2.1 Governing Equations . 5
1.2.2 Mesh Quantities . 6
1.2.3 Numerical Time Integration . 7
1.2.4 Summary of the Lagrange Time Step . 8

1.3 Reference Code Overview . 9
1.3.1 Sedov Blast Wave Problem . 9
1.3.2 Symbols Used in Code Description . 10
1.3.3 Main Program . 13

1.4 Time Increment Calculation . 14
1.5 Lagrange Leapfrog Algorithm . 14

1.5.1 Advance Node Quantities . 14
1.5.1.1 Calculate Node Forces . 14
1.5.1.2 Calculate Node Accelerations . 16
1.5.1.3 Apply Boundary Conditions . 16
1.5.1.4 Advance Node Velocities . 16
1.5.1.5 Advance Node Positions . 16

1.5.2 Advance Element Quantities . 16
1.5.2.1 Calculate Kinematic Element Quantities 17
1.5.2.2 Calculate Artificial Viscosity . 17
1.5.2.3 Apply Material Properties . 18
1.5.2.4 Update Element Volumes . 18

1.5.3 Calculate Time Constraints . 19
1.6 Benchmarks and Metrics . 19

1.6.1 Benchmarks . 19
1.6.1.1 Kernel 1 – Hexahedron volume calculation 19

1

1.6.1.2 Kernel 2 – Force calculation . 20
1.6.1.3 Kernel 3 – Calculate linear and quadratic artificial viscosity coeffi-

cients . 20
1.6.2 Metrics . 20

1.7 Architecture Characterization . 21
1.7.1 Primitive data types . 21
1.7.2 Memory Locality . 21
1.7.3 Network Locality . 22
1.7.4 Parallelism . 23
1.7.5 Compiler . 24

Bibliography 25

2

Chapter 1

Hydrodynamics Challenge Problem

The hydrodynamics challenge problem represents a classical HPC physics problem, namely high
deformation event modeling via Lagrangian shock hydrodynamics. This challenge problem solves
the Sedov blast wave problem for one material in three dimensions. The problem has an analytic
solution, and can be scaled to arbitrarily large problem sizes. The reference code is drawn from a
production LLNL hydrodynamics code.

1.1 Introduction
1.1.1 Motivation for Hydrocodes for Defense Applications

Computer simulations of a wide variety of science and engineering problems require modeling
hydrodynamics, which describes the motion of materials relative to each other when subject to forces.
Herein, we refer to computer codes that solve the equations of hydrodynamics as hydrocodes.

Many important DoD simulation problems involve complex multi-material systems that undergo
large deformations. Examples include armor defense, penetration mechanics, blast effects, structural
integrity, and conventional munitions such as shaped charges and explosively formed projectiles. In-
deed, the original motivation to develop hydrocodes was to solve problems with defense applications.
1.1.1.1 Hydrocodes in DoD HPC Workloads

The FY2010 Requirements Analysis Report issued by the DoD High Performance Computing
Modernization Program (HPCMP) Office shows that a major portion of DoD HPC activities involves
hydrocodes [5]. The report surveyed 496 projects across the Services and various Agencies, rep-
resenting 4,050 HPCMP users at more than 125 locations, including government, contractors, and
academia. Each project was grouped into one of ten categories. The Computational Fluid Dynamics
(CFD) category accounted for the most projects (37% of the total) and the most users (27% of the
total). The Computational Structural Mechanics (CSM) category was fourth with about 10% of total
users. According to the report, hydrocodes are among the most used of all applications with several
ranked in the top ten in terms of number of users. In addition, of all non-real time applications, four
DOE hydrocodes (CTH, ALE3D, Sierra, and Alegra) are ranked in the top ten in terms of CPU hours.
1.1.1.2 Hydrocodes on UHPC Architectures

Numerical algorithms used in hydrocodes present computational issues not found in other challenge
problems. A typical hydrocode approximates the hydrodynamics equations discretely by partitioning
the spatial problem domain into a collection of volumetric elements defined by a mesh. A node on the
mesh is a point where mesh lines intersect. Finite difference equations that approximate differential

3

operators in the equations couple variables on the mesh (e.g, at nodes and elements) via stencil oper-
ations. Other computations, involving material properties and equation of state, are interleaved with
the stencil operations. The operations must be performed in a specific order for numerical accuracy
and computational robustness.

Due to these computational characteristics, plus the importance of hydrocodes to DoD HPC efforts,
a hydrodynamics challenge problem is an important inclusion in a code suite used to evaluate UHPC
architectures.

UHPC “petaflop in a rack” architectures that can efficiently solve the hydro challenge problem will
create a new capability for simulation-coupled sensor processing. An increase in processing power in
the field could enable simulation-in-the-loop for real-time algorithms to evaluate tactical threats and
deliver appropriate responses for threat elimination. An LLNL/DARPA imaging example [8] of this
capability includes simulation to improve the accuracy of radar propagation in buildings, as explored
in the DARPA VisiBuilding program.
1.1.2 Hydrodynamics Methods

There are two alternative specifications of the governing equations for hydrodynamics. While
mathematically equivalent, the formulations naturally lead to different numerical solution algorithms.
The formulations can be found in any book on continuum mechanics; e.g., see [2]. In the Eulerian
frame of reference, physical variables such as density, pressure, and velocity, are defined as functions
at fixed spatial positions over time. Thus, the Eulerian form of the equations can be thought of as
describing the spatial distribution of the flow variables at each instant in time. The Lagrangian for-
mulation exploits the fact that values of some physical variables refer to identifiable pieces of matter
at certain positions in space, a view similar to particle mechanics. In the Lagrangian formulation,
the flow variables are defined as functions of time and particular material elements and describe the
dynamical history of those elements. Both formulations are used in hydrocodes and have advantages
and disadvantages for various applications.

Eulerian hydrocodes, such as CTH, typically employ an orthogonal mesh for accuracy of the nu-
merical approximation. Materials flow through the mesh, which is fixed in time and space, as a sim-
ulation progresses. Eulerian codes are particularly useful for problems that exhibit strong shearing
and vortical motion such as that found in turbulent flows. However, moving material boundaries and
interactions among materials are less natural to express with Eulerian methods than with Lagrangian
methods. For example, each material in a multi-material mesh element may be represented as a frac-
tion of element volume. Material interfaces are not directly represented and thus tend to diffuse in
a non-physical manner when not aligned with the mesh. Without additional numerical machinery
to construct material interfaces, Eulerian methods require very fine mesh resolution for good spatial
accuracy. The left-hand image in Fig. 1.1 illustrates how a fixed mesh, Eulerian code may not resolve
a material interface accurately.

In Lagrangian hydrocodes, the initial mesh configuration partitions the problem domain into mate-
rial elements and element boundaries are constructed to align with material interfaces. As a simulation
evolves, the mesh follows the motion of these elements through space and time. Lagrangian methods
handle moving boundaries and multiple materials naturally and can provide a highly accurate solu-
tion for many problems without requiring an excessively fine mesh. The right-hand image in Fig. 1.1
illustrates this. However, when the flow involves sufficiently complex structure (e.g., strong shearing
or vorticity), Lagrangian methods can perform poorly as mesh elements distort and possibly tangle.

ALE (Arbitrary Lagrangian Eulerian) codes (such as ALE3D [1]) have been developed to seek a

4

Figure 1.1. The accuracy of a simulation involving a boundary between two materials (here shown
in white and blue) usually depends on how well the mesh can represent the boundary. The
left image shows a fixed Eulerian mesh and a material interface that does not align with mesh
element boundaries. Since the interface is not represented explicitly, its position must be inferred
from material volume fractions in the elements. The right image shows how Lagrangian mesh
nodes follow the motion of the (same) material interface directly, thus representing it much more
accurately.

compromise between the Eulerian and Lagrangian formulations. ALE methods can accurately solve
problems involving moving boundaries, multiple materials, and strong shearing and vortical flow
regions. The general strategy is to evolve the problem using the Lagrangian algorithm until the mesh
reaches a level of distortion such that continuing in this fashion is problematic. At this point, the mesh
is relaxed to a more numerically-desirable configuration. Then, the simulation variables are mapped
to the new mesh and the simulation continues.

1.2 Lagrangian Hydrodynamics: A Closer Look
While integration schemes and numerical algorithms employed in hydrocodes vary, most codes

posses similar computational characteristics and data access patterns. In the interest of algorithm
simplicity and smaller code size, while capturing essential features of production hydrocodes, we
have chosen a Lagrangian hydrodynamics methodology for our challenge problem.
1.2.1 Governing Equations

The inviscid compressible hydrodynamics equations represent the conservation of mass, momen-
tum, and energy [2]. In the Lagrangian description, the differential equations are:

Dρ

Dt
= −ρ−→∇ · −→U (1.1)

ρ
D
−→
U

Dt
=
−→∇ ·Σ (1.2)

De

Dt
=

1

ρ
Tr(εtot ·Σ) = −pDVspec

Dt
+ VspecTr(ε · S) (1.3)

5

The variables on the left hand-side of the equations are density ρ, the velocity vector
−→
U, and the

internal energy e. The total strain rate tensor is:

(εtot)ij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
(1.4)

where
−→
X = (X1, X2, X3) = (x, y, z) is the spatial position vector and

−→
U = (U1, U2, U3) = (Ux, Uy, Uz).

The total stress tensor is
Σij = Sij − pδij (1.5)

where p is the isotropic pressure:

p = −1

3
Tr(Σ) (1.6)

and δij is the Dirac delta tensor. The tensor S contains the stress deviator terms Sij = Σij +pδij . The
variable Vspec is the specific volume: Vspec = 1

ρ
. The tensor ε is the deviatoric strain tensor:

ε = (εtot)−
1

3

−→∇ · −→U (1.7)

Here, the Lagrange time derivative (or material derivative) is a total derivative moving with the flow
field:

D

Dt
=

∂

∂t
+
−→
U · −→∇ (1.8)

The pressure is usually determined by an equation of state that gives it as a function of density and
internal energy: p = EOS(ρ, e). The stress deviator terms are usually determined by some (material)
constitutive relations.

In the interest of simplicity, our challenge problem code solves the Euler equations describing a
single material and assume an inviscid approximation of the stress tensor; i.e., no shearing stresses
Sij = 0. The resulting equations are:

Dρ

Dt
= −ρ−→∇ · −→U (1.9)

ρ
D
−→
U

Dt
= −−→∇ · p (1.10)

De

Dt
= −p

ρ

−→∇ · −→U = −pDVspec
Dt

(1.11)

1.2.2 Mesh Quantities
To simulate on a computer a physical problem described by the partial differential equations in

Section 1.2.1, it is common to define a discrete mesh which covers the physical region of interest.
The mesh partitions the region into a collection of disjoint elements. In our case, the mesh defines
each element to be a potentially distorted hexahedron in three-dimensional space.

The equations are solved using a staggered mesh approximation [9]. That is, thermodynamic vari-
ables such as ρ, e, and p are approximated as piece-wise constant functions within each element. This
is known as single-point quadrature; the value of the function in an element is represented at the point

6

element	

node	

Figure 1.2. Variables on a staggered mesh. Thermodynamic variables are represented at element
centers. Kinematic variables are represented at nodes. The figure shows a two-dimensional mesh
for simplicity; a three-dimensional mesh representation is the obvious extension.

at the element center. Kinematic variables such as
−→
X and

−→
U are defined at the element nodes. The

spatial relationships among these variables are illustrated in Fig. 1.2. Spatial gradients are computed
using finite element approximations. The reference code (see Section 1.3) uses specific computational
operations to perform the finite element approximations that are employed in production hydrocodes.
1.2.3 Numerical Time Integration

After setting the initial values of the solution variables on the mesh and defining appropriate bound-
ary conditions, the solution evolves by integrating the equations in time. As is common in hydrody-
namics simulations, the challenge problem implementation uses an explicit time stepping algorithm
to advance the solution through a sequence of discrete time increments. That is, the solution at time
tn is advanced to time tn+1 = tn + ∆tn, where n is the step number and ∆tn = tn+1 − tn is the time
increment.

An accurate and robust Lagrangian time integration algorithm requires that several issues be ad-
dressed: time increment selection, artificial viscosity, and an hourglass filter. Production Lagrangian
hydrocodes treat these concerns in various ways all of which adds to algorithm and code complexity.
The inclusion of these mechanisms in our challenge problem code allows us to maintain essential
features of production hydrocodes.

The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of each time incre-
ment based on the shortest distance across any mesh element and the sound speed of the material
in the element [4]. The stability condition insures that the simulation does not propagate information
faster in the numerical approximation than is dictated by the governing equations. Since the same time
increment is used to advance the solution over the entire mesh, the determination of the maximum
allowable increment usually requires a collective communication operation.

To model the entropy-conserving properties of the governing equations properly, the discrete equa-
tions must be augmented with a dissipation mechanism. In reality, physical viscosity has a dissipation
length scale of a few molecular mean free paths which cannot be represented at the length scale of
typical mesh elements. Nevertheless, the artificial viscosity mechanism employed in any hydrocode
usually was developed using the exemplar of real physical viscosity. The artificial viscosity employed
in our reference code is based on the model developed by LLNL scientist Christensen [3], which is a

7

major advance in computational hydrodynamics algorithms.
The single-point quadrature mesh elements used in the challenge problem implementation, while

less accurate than alternatives, have a long history of demonstrated robustness for modeling realistic
problems involving plastic flow and shock discontinuities. Unfortunately, these elements possess
spurious singular modes, or “hourglass” modes, that can result in physically erroneous response. To
remedy this, the reference implementation uses the Flanagan-Belytschko kinematic hourglass filter
[6] which is used commonly in Lagrange finite element hydrocodes.

Before summarizing the Lagrange time integration step, we note that, due to the use of an artificial
viscosity and an hourglass filter, the reference implementation actually solves modified forms of the
momentum and energy equations described in Section 1.2.1 in our code. For the Euler equations,
these equations become:

ρ
D
−→
U

Dt
= −−→∇ · (p+ q) + ρaHG (1.12)

De

Dt
= −(p+ q)

DVspec
Dt

+ ėHG (1.13)

Here, q is the artificial viscosity which acts like a pressure term and aHG and ėHG are acceleration and
heating terms, respectively, due to the hourglass filter.

Finally, note that the Lagrangian integration approach implies that the mass in each element is
constant in time. Thus, the equation for mass conservation can be rewritten as

ρV = ρ0 (1.14)

where V is a relative volume (i.e., element volume divided by initial element volume V0) and ρ0
is a reference density (i.e., element mass (constant) divided by V0). The reference code uses this
alternative form of the mass conservation equation; in particular, V is evolved in time rather than ρ.
Eq. 1.14 shows how to determine ρ in an element from V when needed.
1.2.4 Summary of the Lagrange Time Step

Each discrete Lagrange time step advances the solution variables (V n, pn, en,
−→
X
n
,
−→
U

n
) at the cur-

rent time tn to their values (V n+1, pn+1, en+1,
−→
X
n+1

,
−→
U

n+1
) at the new time tn+1, where ∆tn =

tn+1 − tn is the time increment. In this process, the reference code first advances variables at mesh
nodes, then updates element variables based on the new node variable values. The steps are summa-
rized as follows:

1. Calculate the time increment ∆tn.
2. Construct a force at each mesh node. This involves integrating pn and qn over a control volume

at each node, and calculating the hourglass filter contribution from each element to each of its
surrounding nodes. The result is a force vector

−→
F at each node on the mesh.

3. Compute the acceleration at each mesh node. Computing the acceleration uses the force at the
node and Newton’s Second Law of Motion:

−→
F = m0

−→
A . Here, m0 is the mass at a node; for

our problem, this mass is constant in time since the mass in each element surrounding a node
remains constant. In this step, it may also be necessary to impose boundary conditions on the
acceleration.

4. Compute the new velocity at each mesh node. The new velocity
−→
U

n+1
is computed by discrete

integration of the acceleration: D
−→
U
Dt

=
−→
A .

8

Z

Y

X

Energy
Point
Source

Figure 1.3. Our challenge problem code solves the Sedov problem on a three- dimensional paral-
lelepiped domain, one corner of which lies at the origin. The box in the figure is the computational
region which includes a finite portion of one octant of three-dimensional space. On the colored
faces of the box, we impose symmetry boundary conditions. The other three faces are free
boundaries. The origin represents a point source of energy imposed as an initial condition.

5. Compute the new position at each mesh node. The new position
−→
X
n+1

is computed by discrete

integration of the velocity: D
−→
X
Dt

=
−→
U.

6. Update various element variables based on node variables advanced to tn+1. Such element vari-
ables include V n+1 and accessory variables used to calculate the artificial viscosity, determine
timestep constraints, etc.

7. Calculate new artificial viscosity qn+1 in each element.
8. Apply material model properties based on material, volume, etc. in each element. This includes

equation of state evaluation, which provides the new pressure pn+1, and internal energy en+1.
9. Compute time constraints which will be applied when ∆tn+1 is calculated for next step.

1.3 Reference Code Overview
1.3.1 Sedov Blast Wave Problem

Our challenge problem reference code simulates the Sedov blast wave problem [7] in three spatial
dimensions. The solution is generated by solving the Euler equations described in Section 1.2.3. The
problem solution is spherically-symmetric; that is, the solution is the same along each ray extending
from the origin. We solve the problem in a parallelepiped representing a finite portion of one octant
of three-dimensional space. The problem geometry is illustrated in Figure 1.3. The xy, xz, and
yz coordinate planes are symmetry planes for this problem geometry. On these planes we impose
symmetry boundary conditions; that is, the normal component of

−→
U is always zero on each of these

boundaries. On the remaining boundaries, we use free boundary conditions; that is, the solution at the
boundary is allowed to evolve freely.

The initial conditions include a point source of energy deposited at the origin. All other variables
apart from

−→
X and V are initially set to zero. The initial values of

−→
X and V are set based on the initial

mesh configuration. In the box, we prescribe an uniform Cartesian mesh for the initial mesh. Recall

9

Figure 1.4. A simple Cartesian mesh on a box domain in three-dimensional space. The mesh is
divided into four domains, each with eight elements. Each domain is colored differently.

from Section 1.2.2 that the mesh partitions the problem into a collection of hexahedral elements whose
corners are the nodes of the mesh defined by the values of

−→
X .

Note that adjacent elements share nodes and thus the values of variables represented at those nodes.
In the code implementation, the mesh is partitioned into logically-rectangular collections of elements
called domains. Each domain serves as a data locality context: in the reference implementation, data
for variables represented on the portion of the mesh contained in the domain are stored within a single
data structure. Each domain structure holds data for all its elements and nodes surrounding those
elements. Note that nodes on domain boundaries are shared by neighboring domains. If domains
are mapped to processors with disjoint memory subsystems, it is often convenient to replicate the
boundary data. Figure 1.4 shows a simple Cartesian mesh partitioned into 4 domains.

Thus, we have a three level hierarchy for computation, the problem level which is the union of all
domains (i.e., the whole mesh), the domain level, and the element level. The problem may contain one
or more domains, and a domain may contain one or more elements. This allows for flexible scalability
from a single element problem to a very large problem with an arbitrary number of elements, where
the computation is defined over the same physical volume of space. In our serial implementation
the problem contains one domain. The serial implementation LULESH v1.0 is available from the
CHASM web site.
1.3.2 Symbols Used in Code Description

Tables 1.1, 1.2, and 1.3 define symbols used in the description of operations in our reference code
implementation. In particular, the tables relate the variables defined in our description of the governing
equations (Section 1.2.3) to routines used in the code to access them. The first column in each table
lists the variable symbols, the second column describes those variable, and the third column indicates

10

Variable Description Accessor Method(s)

−→
X = (x, y, z) position vector x(), y(), z()
−→
U = (Ux, Uy, Uz) velocity vector xd(), yd(), zd()
−→
A = (Ax, Ay, Az) acceleration vector xdd(), ydd(), zdd()
−→
F = (Fx, Fy, Fz) force vector fx(), fy(), fz()
m0 nodal mass nodalMass()

Table 1.1. Node Variables

Variable Description Accessor Method

p pressure p()
e internal energy e()
q artificial viscosity q()
V relative volume v()
V̇ /V relative volume change per volume vdov()
∆V = Vn+1 −Vn relative volume change delv()
V0 reference (initial) volume volo()
lchar characteristic length arealg()
ε = (εxx, εyy, εzz) diagonal terms of deviatoric strain dxx(), dyy(), dzz()
qlin artificial viscosity linear term ql()
qquad artificial viscosity quadratic term qq()

Table 1.2. Element Variables

the mesh class method used to access the variables on a domain.

Many operations in the code involve loops over the nodes or elements of the domain. In production
hydro codes, the collection of variables referenced in a single element calculation must be passed
through many levels of function calls. Thus as good software engineering practice, it is common
to gather those variables into a set of local data structures. We follow this practice in the reference
code; computational blocks use the local data structures rather than the domain-level data. When the
operations are complete, we scatter the data from the local arrays back to the arrays on the domain.
For example, in a loop over elements, we gather variable data at the nodes around each element into
local arrays of length 8 (the number of nodes surrounding a hexahedral element). We designate the
gather operation as:

G(e)
(n(e)→ñ) : f 7→ f̃

11

Variable Description Accessor Method

tn current simulation time time()
∆tn current time increment deltatime()
∆tCourant Courant time constraint dtcourant()
∆thydro hydro time constraint dthydro()
ucut node velocity cut-off value ucut()

Table 1.3. Scalar Variables

0
1

23
4 5

67

Figure 1.5. Node Numbering

where f is a nodal variable on the mesh and f̃ is the array holding the values of f for the nodes around
element e. Thus, the tilde over an item indicates a node variable whose values have been gathered into
a local array for computation associated with a mesh element. The numbering scheme for the nodes
around the element used to access items in the local array is illustrated in Fig. 1.5.

The inverse mapping operation that scatters the node values in the local array to the mesh arrays is
denoted as:

S(e)
(ñ→n(e)) : f̃ 7→ f

Similarly, while processing the local array of node data for an element, we sometimes gather a
subset of the local array entries in a smaller array of that holds the node values for a particular face of
the element. Such a local array has length 4 (the number of nodes surrounding an element face). We
designate the operation of gathering the local node array entries for face k of an element as:

G(ñk)
(ñ→n̂) : f̃ 7→ f̂

Thus, the hat over an item indicates a node variable whose values have been gathered into a local

12

0 1

23

Figure 1.6. Face Node Numbering

array for computation associated with a face of a mesh element. The inverse mapping operation which
scatters the node values for face k back to the larger local array for element node data is denoted as:

S(ñk)
(n̂→ñ) : f̂ 7→ f̃

The numbering scheme for the nodes around an element face used to access items in the local node
array corresponding to an element face is illustrated in Fig. 1.6.
1.3.3 Main Program

The main routine in our code performs of the following steps:
1. Initialize the problem decomposition, mesh, global data structures. This step contains the

following sub-steps:
(a) Create one or more domains. The number and spatial configuration of the domains de-

pends on how we wish to decompose the problem. Each domain will contain all the state
variables, such as pressure and node coordinates, for a portion of the mesh. We start by
allocating the memory for those variables. Next, we create a lattice of node coordinates
for each domain as a simple array. Each element on the domain is defined by the eight
nodes that surround it.

(b) Create a material index set. The goal of our challenge problem is to emulate the compu-
tational characteristics of a real hydrodynamics code as closely as possible. Such codes
model problems containing multiple materials, where elements containing a given mate-
rial are often identified by an index set. Although our challenge problem code uses only
one material, we create an index set for each domain containing all elements of the domain
and use this to emulate the algorithmic machinery found in a real code.

(c) Define the initial problem state. After identifying the basic entities in the mesh, we ini-
tialize all the state variables associated with the mesh. At this point, we also initialize a
variety of scalar parameters dealing with material models and time step control.

(d) Create boundary conditions. Finally we mark certain entities lying on the mesh bound-
ary so we can apply acceleration boundary conditions to model the mesh symmetries as

13

described above in Section 1.2.1 for our challenge problem.
2. Advance the solution variables to the final simulation time.

The time integration process is implemented in the code as a while-loop near the end of the main
routine. Each iteration of the loop advances the solution variables from the current simulation
time tn to a new simulation time tn+1 over a discrete time increment ∆tn = tn+1 − tn. Here
n is the timestep count. The integration loop is complete when tn+1 reaches the predetermined
simulation stopping time. The body of the while-loop contains the following two sub-steps:

(a) Calculate ∆tn; see Section 1.4.
(b) Advances the solution variables from tn to tn+1 using a “leap frog” time integration

scheme for the Lagrange update; see Section 1.5.

1.4 Time Increment Calculation
The routine CalcTimeIncrement() computes the time increment ∆tn for the current timestep

loop iteration. We aim for a “target” value of tfinal − tn for ∆tn. However, the actual time increment
is allowed to grow by a certain prescribed amount from the value used in the previous step and is
subject to the constraints ∆tCourant and ∆thydro described in Section 1.5.3.

1.5 Lagrange Leapfrog Algorithm
The routine LagrangeLeapFrog() advances the solution from tn to tn+1 over the time incre-

ment ∆tn. The process of advancing the solution is comprised of two major parts. The first described
in Section 1.5.1 advances nodal variables on the mesh. The second described in Section 1.5.2 ad-
vances element variables on the mesh.

In the following description of our challenge problem reference implementation, we indicate the
discrete integration time (via a superscript) for only those variables which comprise our primary
solution state variables as discussed in Section 1.2.4. We emphasize that this does not imply that it is
necessary to store more than one time level of data for such variables. Rather, we feel the time notation
helps the reader relate the following code description to the integration algorithm. Other variables are
associated with an integration time due to their implicit dependence on the solution state.

1.5.1 Advance Node Quantities
The routine LagrangeNodal() advances the nodal mesh variables, primarily velocity

−→
U and

position
−→
X . The main steps in this process are:

1. Calculate nodal forces (Section 1.5.1.1).
2. Calculate nodal accelerations (Section 1.5.1.2).
3. Apply acceleration boundary conditions as needed (Section 1.5.1.3).
4. Integrate nodal accelerations to obtain updated nodal velocities

−→
U

n+1
(Section 1.5.1.4).

5. Integrate nodal velocities to obtain updated nodal positions
−→
X
n+1

(Section 1.5.1.5).

1.5.1.1 Calculate Node Forces
The routine CalcForceForNodes() calculates a three-dimensional force vector

−→
F at each

mesh node based on the values of mesh variables at time tn. First, the components of
−→
F are set to

zero at each node. Then, a volume force contribution is calculated within each mesh element. The
force in each element is used to distribute a force contribution to each of its surrounding nodes. The
total nodal force is accumulated as all elements in the mesh are traversed.

14

The routine CalcVolumeForceForElems() calculates the volume force contribution for each
mesh element. The main steps in this process are:

1. Initialize stress terms for each element. Recall from Section 1.2.1 that our assumption of an
inviscid isotropic stress tensor implies that the three principal stress components are equal, and
the shear stresses are zero. Thus, we initialize the diagonal terms of the stress tensor Σ to
−(p+ q) in each element. This is done in the routine InitStressTermsForElems().

2. Integrate the volumetric stress contributions for each element. This is done in the routine
IntegrateStressForElems() which does the following for each element in a loop over
elements:

(a) Gather node coordinates for the element into local arrays:
G(e)

(n(e)→ñ) :
−→
X 7→ −̃→X

(b) Calculate normal vectors at element nodes (as an interpolation of element face normals)
(routine CalcElemNodeNormals()).
• Set node normals of element to zero,

−̃→
N = 0.

• Enumerate the six faces of an element G(ñk)
(ñ→n̂) :

−̃→
X 7→ −̂→X, k = 0 . . . 5.

For each face, calculate a normal vector, scale the magnitude by one quarter, and sum
the scaled vector into each of the four nodes of the element corresponding to the face.

(c) Sum force contribution in element to local vector for each node around element (routine
SumElemStressesToNodeForces()).

F̃x = Σ̃xx
−̃→
Nx

F̃y = Σ̃yy
−̃→
Ny

F̃z = Σ̃zz
−̃→
Nz

(d) Add local force contribution in each element node to proper node force vectors on mesh:
S(e)

(ñ→n(e)) :
−̃→
F 7→ −→F

3. Perform a diagnostic check: check each element volume to make sure it is positive; if a volume
less than or equal to zero is found, the code exits.

4. Calculate the hourglass control contribution for each element. This is done in the routine
CalcHourglassControlForElems() which does the following for each element in a
loop over elements:

(a) Gather node coordinates for element into local arrays.
G(e)

(n(e)→ñ) :
−→
X 7→ −̃→X

(b) Calculate element volume derivatives (routine CalcElemVolumeDerivative()).
Starting with a formula for the volume of a hexahedron, take the derivative of that volume
formula with respect to the coordinates at one of the nodes. By symmetry, the formula for
one node can be applied to each of the other seven nodes.

(c) Perform a diagnostic check for element volume less than or equal to zero. If such a volume
is found, the code exits.

Lastly, the routine CalcFBHourglassForceForElems() is called which calculates the
Flanagan-Belytschko hourglass control force for each element; the paper [6] describes the math-
ematics behind the algorithm. The hourglass filter contributions for each element are indepen-
dently added directly to (domain level)

−→
F , which completes the nodal force calculation.

15

1.5.1.2 Calculate Node Accelerations
The routine CalcAccelerationForNodes() calculates a three-dimensional acceleration vec-

tor
−→
A at each mesh node from

−→
F . The acceleration is computed using Newton’s Second Law of

Motion,
−→
F = m0

−→
A , where m0 is the mass at the node; i.e.,

−→
A =

−→
F/m0

Note that since the mass in each element is constant in time for our calculations, the mass at each
node is also constant in time. The nodal mass values are set during the problem set up.

1.5.1.3 Apply Boundary Conditions
The routine ApplyAccelerationBoundaryConditions() applies symmetry boundary con-

ditions at nodes on the boundaries of the mesh where these were specified during problem set up. A
symmetry boundary condition sets the normal component of

−→
A at the boundary to zero. This implies

that the normal component of the velocity vector
−→
U will remain constant in time.

Recall that the benchmark Sedov problem is spherically-symmetric and that we simulate it in a
cubic domain containing a single octant of the sphere. To maintain spherical symmetry of the domain,
we apply symmetry boundary conditions along the faces of the cubic domain that contact the planes
separating the octants of the sphere. This forces the normal components of

−→
U to be zero along these

boundary faces for all time since they were initialized to zero.

1.5.1.4 Advance Node Velocities
The routine CalcVelocityForNodes() integrates the acceleration at each node to advance

the velocity at the node to tn+1, i.e.,

−→
U

n+1
=
−→
U

n
+
−→
A∆tn

Note that this routine also applies a cut-off to each velocity vector value. Specifically, if a value is
below some prescribed value, that term is set to zero. The reason for this cutoff is to prevent spurious
mesh motion which may arise due to floating point roundoff error when the velocity is near zero.

1.5.1.5 Advance Node Positions
The routine CalcPositionForNodes() performs the last step in the nodal advance portion of

the algorithm by integrating the velocity at each node to advance the position of the node to tn+1, i.e.,

−→
X
n+1

=
−→
X
n

+
−→
U

n+1
∆tn

1.5.2 Advance Element Quantities
The routine LagrangeElements() advances the element mesh quantities, primarily pressure

p, internal energy e, and relative volume V . The artificial viscosity q in each element is also calculated
here. The main steps in this process are:

1. Calculate element quantities based on nodal kinematic quantities (Section 1.5.2.1).
2. Calculate element artificial viscosity terms (Section 1.5.2.2).
3. Apply material properties in each element needed to calulate updated pressure pn+1 and internal

energy en+1 (Section 1.5.2.3).
4. Compute updated element volume Vn+1 (Section 1.5.2.4).

16

1.5.2.1 Calculate Kinematic Element Quantities
The routine CalcLagrangeElements() calculates various element quantities that are based

on the new kinematic node quantities
−→
U

n+1
and
−→
X
n+1

computed as described in Section 1.5.1.4 and
Section 1.5.1.5, respectively.

First, CalcLagrangeElements() calls the routine CalcKinematicsForElems() which
calculates terms in the total strain rate tensor εtot that are used to compute the terms in the deviatoric
strain rate tensor ε. These calculations are done for each element in a loop over elements as follows:

1. Gather node coordinates for element into local arrays.
G(e)

(n(e)→ñ) :
−→
X 7→ −̃→X

2. Calculate volume from element coordinates via call to CalcElemVolume(). Then compute
Vn+1 = volume/V0 and relative volume change ∆V = Vn+1 −Vn.

3. Calculate the characteristic length lchar for the element. The length is computed in the routine
CalcElemCharacteristicLength() which divides the volume of the element by the
area of its largest face.

4. Gather node velocities for element into local arrays.
G(e)

(n(e)→ñ) :
−→
U 7→ −̃→U

5. Modify nodal positions in local array so that they are at the time halfway between tn and tn+1:
−̃→
X− = 1

2
∆t
−̃→
U

6. Call the routine CalcElemShapeFunctionDerivatives()which calculates shape func-
tion derivatives for the element which are used to compute the velocity gradient for the element.

7. Calculate element velocity gradient which defines the terms of εtot. The diagonal entries of εtot
are then used to initialize the diagonal entries of the strain rate tensor ε.

Lastly, the routine CalcLagrangeElements() calculates V̇ /V = (εxx + εyy + εzz)/3 and
subtracts V̇ /V from each strain component to define the final deviatoric strain rate tensor.

1.5.2.2 Calculate Artificial Viscosity
The routine CalcQForElems() calculates the artificial viscosity term q for each element. The

paper [3] describes the mathematical aspects of the algorithm. The calculation is partitioned into two
parts.

The routine CalcMonotonicQGradientsForElems() performs the first part. For each ele-
ment in a loop over elements, this routine does the following:

1. Gather nodal coordinates for element into local arrays.
G(e)

(n(e)→ñ) :
−→
X 7→ −̃→X

2. Gather nodal velocities for element into local arrays.
G(e)

(n(e)→ñ) :
−→
U 7→ −̃→U

3. Compute various discrete spatial gradients of nodal coordinates and velocity gradients with re-
spect to a reference coordinate system. The mapping (x, y, z) 7→ (ξ, η, ζ) maps the element to a
unit cube. Mapping the element to the unit cube simplifies the process of defining a single value
for q in the element from the gradient information. The resulting gradients for the coordinates
and velocity are obtained from the mesh object via the methods delx xi(), delx eta(),
delx zeta(), and delv xi(), delv eta(), delv zeta(), respectively.

The routine CalcMonotonicQForElems() performs the second part of the q calculation. This
routine calls CalcMonotonicQRegionForElems()which uses the spatial gradient information

17

computed earlier to compute linear and quadratic terms for q, qlin and qquad, respectively. The actual
element values of q are calculated during the application of material properties in each element. This
is described next in Section 1.5.2.3.

1.5.2.3 Apply Material Properties
The routine ApplyMaterialPropertiesForElems() updates the pressure and internal en-

ergy variables to their values at the new time, pn+1 and en+1. The routine first initializes a temporary
array with the values of Vn+1 for each element that was computed earlier (Section 1.5.2.1). Then,
upper and lower cut-off values are applied to each array value to keep the relative volumes within a
prescribed range (not too close to zero and not too large). Next, the routine EvalEOSForElems()
is called and the array of modified relative element volumes is passed to it.

The routine EvalEOSForElems() calculates updated values for pressure pn+1 and internal en-
ergy en+1. The computation involves several loops over elements to pack various mesh element
arrays (e.g., p, e, q, etc.) into local temporary arrays. Several other quantities are computed and
stored in element length temporary arrays also. The temporary arrays are needed because the routine
CalcEnergyForElems() calculates pn+1 and en+1 in each element in an iterative process that
requires knowledge of those variables at time tn while it computes the new time values.

The routine CalcEnergyForElems() calls CalcPressureForElems() repeatedly: The
function CalcPressureForElems() is the Equation of State model for a “gamma law” gas:

P = (γ − 1)
ρ

ρ0
e

and the value c1s passed to the routine is defined to be γ − 1. The Equation of State calculation is a
core part of any hydrocode. In a production code, one of any number of Equation of State functions
may be called to generate a pressure that is needed to close the system of equations and generate a
unique solution.

When EvalEOSForElems() returns, the mesh element arrays for p, e, and q are set to their
updated values. The algorithms in CalcEnergyForElems() and EvalEOSForElems() are
described in [3].

Lastly, the routine CalcSoundSpeedForElems() calculates the sound speed csound in each
element using pn+1 and en+1:

csound =
pn+1en+1 + (Vn+1)2pn+1(γ − 1)(1

Vn+1
−1

+ 1)

ρ0

The maximum value of csound is used to calculate constraints on ∆tn+1 which will be used for the
next time advance step.

1.5.2.4 Update Element Volumes
The routine UpdateVolumesForElems() updates the relative volume to Vn+1. This rou-

tine basically resets the current volume Vn in each element to the new volume Vn+1 computed in
Section 1.5.2.3 so the simulation can continue to the next time increment.

Note that this routine applies a cut-off to the relative volume V in each element. Specifically, if V
is sufficiently close to one (a prescribed tolerance), then V is set to one. The reason for this cutoff
is to prevent spurious deviations of volume from their initial values which may arise due to floating
point roundoff error.

18

1.5.3 Calculate Time Constraints
After all solution variables are advanced to tn+1, the constraints ∆tCourant and ∆thydro for the next

time increment ∆tn+1 are calculated in the routine CalcTimeConstraintsForElems(). Each
constraint is computed in each element and then the final constraint value is the minimum over all
element values. The constraints are applied during the computation of ∆t for the next time step.

The routine CalcCourantConstraintForElems() calculates the Courant timestep con-
straint ∆tCourant. This constraint is calculated only in elements whose volumes are changing; that
is, V̇ /V 6= 0. If all element volumes remain the same, there is no Courant constraint applied during
the subsequent ∆t calculation. Essentially, ∆tCourant for an element is the ratio: characteristic length
for the element (calculated in Section 1.5.2.1) divided by the sound speed csound in the element. How-
ever, when the element is undergoing compression, that is V̇ /V < 0, additional terms are added to
the denominator to reduce ∆tCourant further.

The routine CalcHydroConstraintForElems() calculates the hydro timestep constraint
∆thydro. Similar to ∆tCourant, ∆thydro is calculated only in elements whose volumes are changing.
When an element is undergoing volume change, ∆thydro for the element is some maximum allowable
element volume change (prescribed) divided by V̇ /V in the element.

1.6 Benchmarks and Metrics
The Lagrange algorithm can be applied to a wide range of hydrodynamics simulation problems.

To simplify the challenge problem code, we limit its application to a well-know test problem that can
be used to verify correctness of the implementation and analyze execution performance. Specifically,
the problem setup phase is hard-coded for the Sedov blast wave problem [7]. An example calculation
of this problem is shown in Figure 1.7. The Sedov problem has a known analytic solution and can be
scaled to arbitrarily large problem sizes with mesh resolution being the primary scaling factor.

The serial reference code LULESH v1.0, compiled with g++ 4.1.2 using -O3 option, has been
timed running on one core of a 2.3 GHz. Opteron 8356 processor. Using a mesh with a single domain
of 45x45x45 elements (22 floating point values per element, 16 integers per element) and 46x46x46
nodes (13 floating point values per node), the wall clock time was 8 minutes and 58 seconds.

This standard configuration runs in 1495 iterations of the main loop. We expect that a UHPC system
should be able to run a calculation containing more than one billion mesh elements and potentially
more than that, depending on available memory.
1.6.1 Benchmarks

Several of the key kernels found in the Lagrange time step have been extracted for ease of de-
tailed performance analysis on various architectures. The kernels consist of the hexahedron volume
calculation, the force calculation, and calculation of the linear and quadratic artificial viscocity coef-
ficients. Each kernel is described below. The code for these kernels are provided in the CHASM code
repository.
1.6.1.1 Kernel 1 – Hexahedron volume calculation

This kernel tests the ability of the compiler to optimize some very common code constructs. The
kernel calculation involves data access through index arrays. It exhibits an access pattern that gathers
data from node centered fields, and stores data on element centered fields. Index arrays are a common
feature found in unstructured meshes, as are operation between fields defined over different mesh
centerings. This computaion contains a large amount of available parallelism, since all arrays accesses
are to independent memory locations. This kernel contains initialization code and may be compiled

19

Figure 1.7. The Sedov blast wave problem models an expanding shock front originating from a
point blast.

and run.
1.6.1.2 Kernel 2 – Force calculation

This kernel generates nodal forces from element stresses. It is possible to rewrite this code in a more
performance efficient form, but the style used here is what is found in actual finite element codes. The
code is split into routines that make it easier for engineers to think about a tiny part of a problem
with regular structure (i.e. a single face or element within a mesh), which then gets assembled into a
more complicated structure at a larger scale (i.e. faces are assembled into elements, and elements are
assembled into domains). The code is written in this style to reduce both the complexity of both the
code and the physics problem being solved. The parallelism may be limited due to the way the code
is (necessarily) structured. The indexed array usage may also complicate automatic parallelization,
although the introduction of compiler directives to expose parallelism may be an acceptable solution.
This kernel contains initialization code and may be compiled and run.
1.6.1.3 Kernel 3 – Calculate linear and quadratic artificial viscosity coefficients

This kernel contains conditional logic, and is somewhat representative of conditional data depen-
dencies that exist in real codes. An alternative routine CalcEnergyForElements is even more rep-
resentative, but it is not as compact as the Kernel 3 code fragment. This kernel does not contain
initialization code.
1.6.2 Metrics

We propose various metrics to evaluate performance. The metrics include:
• Grind Time: A common metric used to evaluate performance of finite element codes is “grind

time,” which is the average time required to update the solution variables in an element through
one time increment, typically in microseconds. Current production codes typically execute the

20

Sedov problem on x86-64/Linux systems with a grind between 2 and 3 microseconds on one
processor. The grind time for the reference code in the configuration described above was 3.95
microseconds.
• Memory Bandwidth: Our implementation utilizes an unstructured mesh representation which

is often employed in production hydro codes for flexibility in defining complex geometries.
The use of mesh connectivity arrays, such as those that define nodes associated with each mesh
element, results in indirection that can stress system memory bandwidth.
• Scalability and Parallelism: Our implementation is designed to treat each mesh element as the

smallest unit of work. This will allow a very large amount of fine-grained parallelism to be
exercised by UHPC systems. By dividing the mesh into domains, coarse grain parallelism may
be employed.
• Programmability: Our challenge problem reference implementation is derived from a produc-

tion hydrocode containing several hundred thousand lines of source code. However, our ref-
erence implementation consists of only a few thousand lines. This will allow exploration of
implementation alternatives suited to novel UHPC architectures, potentially involving signif-
icant code rewriting. Also, since we have strived to retain essential features of the original
code in the reference implementation, these implementation modifications will be relevant to
production hydrocodes.

1.7 Architecture Characterization
We have chosen to implement a 3D hydrodynamics challenge problem in order to simplify scalabil-

ity, expose more parallelism, and present more realistic communication patterns among data elements.
Our problem has been carefully constructed to characterize a variety of system-specific parameters:
1.7.1 Primitive data types

There are three data types used in the LULESH code:
• Real t Can be defined as float, double, long double, or any other numeric type suitable for real

number arithmetic. Furthermore, since LULESH has been written in C++, LULESH can be
extended to support user defined types for fixed-point or interval arithmetic if those features are
not natively supported in the hardware, compiler, or runtime system.
• Integer t Different integer word sizes perform with different efficiency due to clock-cycle and

memory bandwidth limitations. Currently, the only direct integer quantity used in LULESH is
a 12 bit flag variable.
• Index t This is the type used for array indexing and loop-index variables. In theory, an ar-

chitecture may support different word sizes for this type of variable, again for both clock-
cycle/register efficiency and memory bandwidth purposes.

1.7.2 Memory Locality
We have isolated all the LULESH data structures in the mesh object at the top of the LULESH

source code file. This reduces the code changes needed to map LULESH to the memory subsystem
of a specific architecture to just a few lines of code per data structure decision.
• Interleave Three dimensional coordinate data can be represented as three separate arrays for

the x, y, and z coordinate components. It can also be represented as a single array in which each
array entry consists of three coordinate components. The decision of how to bundle coordinate
data efficiently depends on the implementation of both the core’s micro-architecture and the
memory subsystem. For example, a single array could reduce register pressure in an inner loop,

21

while using multiple independent arrays may expose more opportunities for vectorization.
• Latency Many memory subsystems consist of different cache levels, each having a different

latency. We have introduced a domain as a locality context that can be resized to fit differing
memory hierarchies. Rather than running one large domain that won’t fit into cache or local
store, the mesh can instead be described as multiple smaller domains each of whose local data
fits into the local store. This flexibility should allow TA-1 teams to experiment with varying
granularity of task in terms of the number of mesh elements being processed by a task.
• Contention For multi-core architectures with a cache hierarchy, re-organizing the arrays may

reduce or eliminate cache contention. By isolating the allocation of arrays in the LULESH
mesh object, it is easy to experiment with alternative layouts.

1.7.3 Network Locality
Domain level locality contexts not only allow experimentation with memory locality optimizations,

they also allow evaluation of network communication and locality within the network. By carefully
mapping domains to the network architecture, we can isolate the effects of bandwidth limitations
and contention in the network. We note that although the challenge problem has been implemented
as a simple cubic mesh, no assumption can be made about topology. In a “real” mesh, there will be
reduced and enhanced connectivity points. That is, nodes on the mesh may be shared by fewer or more
elements than in the logically-rectangular configuration. While it is true that every element will always
be defined in terms of eight nodes, there are no guarantees about the number of elements sharing a
given node. TA-1 teams should avoid using optimizations that depend on the dividing the problem
into simple nested loops over a fixed rectangular block topology since this is not representative for
many real-world calculations.
• Bandwidth In a parallel implementation of the hydrodynamics challenge problem, there are

two major interacting factors, mesh discretization and domain partitioning. For example, a 1D
slab domain partitioning imposes a (spatially) linear nearest-neighbor communication pattern.
If this domain partitioning is chosen as a “base configuration” for best case network communi-
cation, the mesh must be discretized accordingly.
• Contention In a standard 3D domain stencil computation over domains, each domain must

support bi-directional communication with other domains with which it shares a face. Further-
more, for our challenge problem and many “real-world” problems, we will require bi-directional
communication between domains that touch at corners. Very few network architectures directly
support this corner coupling, so corner coupling introduces the possibility of message con-
tention (and associated latency skew which accentuates or causes a load imbalance).

Finally, the LULESH challenge problem can be run in two modes. It can be run with a fixed time
increment size so that only “nearest-neighbor” data exchanges are required between domains, or it
can be run in a Courant/hydro limited manner that requires an additional global reduction across all
the domains. In fixed time step mode, assuming domains are mapped across compute nodes of the
UHPC machine, the amount of communication between compute nodes should be constant regardless
of scale. It will depend only on the surface area of the domain boundaries and how many domains
are mapped to a compute node. It should be noted that if a fixed time step approach is used, the
time increment must be specified at the beginning of the simulation and must be reasonable (e.g.,
sufficiently small) to allow the simulation to execute to completion without numerical difficulties.

The Courant/hydro option, which allows the time increment to change for each time step, is re-
quired for most real-world problems typically. When the Courant/hydro option is used, the global

22

reduction often introduces a pronounced latency at large scale when the domains are mapped to sep-
arate compute nodes communicating over an interconnection network. Additionally, the run time of
the Courant/hydro variant will go up exponentially, because more time steps are required to run to
completion as the resolution (i.e., mesh spacing) is refined. By default, the code runs in a mode that
requires a global reduction for each iteration of the simulation loop.
1.7.4 Parallelism

There should be many opportunities for vectorization, threading, and node-level parallelism in the
LULESH code.
• Vectorization Since we chose to implement a 3D hydrocode, there is a sizable core computa-

tion applied to a single volumetric element. This should expose good vectorization opportuni-
ties at the leaf function level. There are also vectorization opportunities available in several of
the LULESH code inner-loops.
• Many-core threading The code includes many subroutines that are computationally inten-

sive yet contain few conditional code paths to be executed, making them easy to implement in
GPU-like kernels. In some cases, it is possible to trade off the use of conditional code paths
with unconditional code, some components of which may be superfluous. Specifically, in the
artificial viscosity calculation, there is no need to compute artificial viscosity in an expanding
element (mesh.vdov(i) > 0). Thus it is valid to omit evaluation of CalcMonotonicQGradients-
ForElems() and CalcMonotonicQRegionForElems() for any expanding element, but checking
for the condition and omitting the calculations will introduce conditional logic. Many-core
TA-1 architectures may give better performance by omitting the conditional check and always
performing the artificial viscosity calculations on all elements.
• Multi-core threading (pthread/OpenMP) Several subroutines contain data dependent con-

trol paths that perform reasonably well with this kind of technology. Using the example of
artificial viscosity, multi-core node architectures might have better performance by including
the conditional path.

Factors that may reduce available parallelism include the use of partial-sum operations, and the
indexed array indirection in several parts of the code. There are many partial sums in the code due
to the fact that many operations in real hydrodynamic codes are written in terms of element local
coordinate systems. It is possible that a rewrite of the code could eliminate many of these partial
sums. However, TA-1 teams should use caution in re-writing the partial sum calculations in a way
that depends on a simple rectangular topology, as those optimizations would not be applicable in a
different mesh with more complex mesh connectivity.

LULESH is presently a serial code. However, it has been structured to facilitate distributed memory
parallelism across nodes of a cluster. Comments in the code have been inserted to indicate where
inter-domain parallelism should occur.
• In TimeIncrement, there needs to be a parallel reduction when running in fixed timestep

mode at the start of the top level if statement.
• At the end of CalcForceForNodes, there should be a point to point communication among

nodes to exchange fx, fy, and fz (nodal centering) arrays on boundary nodes and then sum
exchanged boundary values into local values of fx, fy, and fz.
• In CalcQForElems, communication is necessary to populate halo elements for delv xi,
delv eta, and delv zeta (element centered) arrays.
• In the main driver loop, communication is required to exchange x,xd,y,yd,z,and zd (node cen-

23

tered) arrays on boundaries. The value received from the “owner domain” will overwrite the
local value. If a node contains multiple domains, then only one of them will be the node owner
domain (there will be a semi-arbitrary selection of who is owner).

All “network-based” parallelism will occur at those code locations in our parallel implementation,
and these are the locations where most any implementation will find it is necessary to send data
between nodes/cabinets/racks. The “monoQ” communication might be something that can be worked
around with an algorithm change, but the other communication is necessary. We note in closing that
a domain implies a locality context and does not necessarily imply MPI communication between
domains.
1.7.5 Compiler

LULESH includes many constructs commonly found in actual hydrodynamics software, and thus
offers an opportunity to evaluate and tune compilers for these common constructs. Specifically, the
LULESH implementation makes it possible to test inlining, constant propagation, vectorization, and
optimizations related to indexed array usage.

We have tried to organize the LULESH code so that a variety of compiler and run time optimizations
can be tested; e.g., the use of C++ STL libraries or pointer based arrays. We have tried to make it
simple to trade off these underlying implementation details with just a few lines of code changes in
the LULESH mesh object.

Additionally, the code will exercise compiler optimizations of specific C language keywords such
as static, inline, and restrict. The first LULESH code release consists of a single file. TA-1 teams may
choose to divide the code into multiple files for ease of separate compilation and as an opportunity
to test inter-file optimization capabilities of their compilers. Finally, different compilers often have
proprietary directives to enable the generation of proprietary opcodes for their target processors. Such
constructs are not provided in our released code, but TA-1 teams may want to experiment with such
architecture-specific directives.

24

Bibliography

[1] Ale3d web site. https://wci.llnl.gov/codes/ale3d/.

[2] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 2000.

[3] R. B. Christensen. Godunov methods on a staggered mesh: An improved artificial viscosity.
Lawrence Livermore National Laboratory Report, UCRL-JC-105-269, 1991. Available online at
https://e-reports-ext.llnl.gov/pdf/219547.pdf.

[4] R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical
physics. IBM Journal, pages 215–234, March 1967. English translation of the Germal original
published in Mathematische Annalen 100(1):32–74, 1928.

[5] DoD High Performance Computing Modernization Program Office. Department of Defense High
Performance Computing Modernization Program FY 2010 Requirements Analysis Report. 2010.

[6] D. P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadrilateral with orthogonal
hourglass control. International Journal for Numerical Methods in Engineering, pages 679–706,
March 1981.

[7] L. I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press, 1959.

[8] Dan White. A code to model electromagnetic phenomena. Lawrence Livermore National Labo-
ratory S&T Report, November 2007.

[9] M. L. Wilkins. Methods in Computational Physics. Academic Press, 1964.

25

